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1 Improving performance of Local outlier factor with KD-Trees

Local outlier factor (LOF) is an outlier detection algorithm, that detects outliers based on comparing local
density of data instance with its neighbors. It does so to decide if data instance belongs to region of similar
density. It can detect an outlier in a dataset, for which number of clusters is unknown, and clusters are
of different density and size. It’s inspired from KNN (K-Nearest Neighbors) algorithm, and is widely used.
There is a R implemantation available.

The naive approach to do this is to form all pair euclidan distance matrix, and then run knn query to
proceed further. But this approach just sucks, as it is Θ(n2) in terms of both space and time complexity.
But, this can be improvd with KDTrees., and already its implementation exists in python, thanks to scipy,
so lets use this to find outliers.

Synthetic dataset

In [229]: %pylab inline

import numpy as np

np.random.seed(2) # to reproduce the result

Populating the interactive namespace from numpy and matplotlib

WARNING: pylab import has clobbered these variables: [’dist’]

‘%pylab --no-import-all‘ prevents importing * from pylab and numpy

In [230]: dim = 2 # number of dimensions of dataset = 2

# cluster of normal random variable moderately dense

data1 = np.random.np.random.multivariate_normal([0, 1500], [[100000, 0], [0, 100000]], 2000)

# very dense

data2 = np.random.np.random.multivariate_normal([2000, 0], [[10000, 0], [0, 10000]], 2500)

# sparse

data3 = np.random.np.random.multivariate_normal([2500, 2500], [[100000, 0], [0, 100000]], 500)

# mix the three dataset and shuffle

data = np.vstack((np.vstack((data1, data2)), data3))

np.random.shuffle(data)

# add some noise : zipf is skewed distribution and can have extreme values(outliers)

zipf_alpha = 2.25

noise = np.random.zipf(zipf_alpha, (5000,dim)) * np.sign((np.random.randint(2, size = (5000, dim)) - 0.5))

data += noise

1

http://www.rdatamining.com/examples/outlier-detection
http://en.wikipedia.org/wiki/K-d_tree
http://scikit-learn.org/stable/modules/neighbors.html


Naive approach to LOF Pairwise Euclidean distance calculation with DistanceMetric implementation
in scikit-learn. In this, we just compute all-pair euclidean distance, i.e. d(i, j) = ‖x(i)− x(j)‖2.

In [231]: from sklearn.neighbors import DistanceMetric

# distance between points

import time

tic = time.time()

dist = DistanceMetric.get_metric(’euclidean’).pairwise(data)

print ’++ took %g msecs for Distance computation’ % ((time.time() - tic)* 1000)

++ took 740 msecs for Distance computation

Performing KNN query.In this step, the nearest k neighbors are identified Nk(i), and radius is the distance
of k-th rearest neighbor of a datapoint.

r(i) = max
k∈Nk(i)

d(i, k)

In [232]: tic = time.time()

k = 17 # number of neighbors to consider

# get the radius for each point in dataset (distance to kth nearest neighbor)

# radius is the distance of kth nearest point for each point in dataset

idx_knn = np.argsort(dist, axis=1)[:,1 : k + 1] # by row’ get k nearest neighbour

radius = np.linalg.norm(data - data[idx_knn[:, -1]], axis = 1) # radius

print ’+++ took %g msecs for KNN Querying’ % ((time.time() - tic)* 1000)

+++ took 4800 msecs for KNN Querying

Then LRD(Local Reachability distance) is calculated. For this, first reach distance rd(i, j) is com-
puted between point concern x(i) and its neighbors $ j:j∈ N k(i), which is the maximum of eu-
clidean distance or radius r(i)$ofpointconcerned.Then, LRDistheinverseofmeanofreachdistanceofallk−
neighborsofeachpoint.rd(i, j) = max {d(i, j), r(i)}for j ∈ Nk(i)

LRD(i) =
|Nk(i)|∑

j∈Nk(i)
rd(i, j)

In [233]: # calculate the local reachability density

tic = time.time()

LRD = []

for i in range(idx_knn.shape[0]):

LRD.append(np.mean(np.maximum(dist[i, idx_knn[i]], radius[idx_knn[i]])))

print ’++++ took %g msecs for LRD computation’ % ((time.time() - tic)* 1000)

++++ took 429 msecs for LRD computation

finally, the outlier score LOF is calsulated.

LOF (i) =

∑
j∈Nk(i)

LRD(j)
LRD(i)

|Nk(i)|

In [234]: # calculating the outlier score

tic = time.time()

rho = 1. / np.array(LRD) # inverse of density

outlier_score = np.sum(rho[idx_knn], axis = 1)/ np.array(rho, dtype = np.float16)

outlier_score *= 1./k

print ’+++++ took %g msecs for Outlier scoring’ % ((time.time() - tic)* 1000)
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+++++ took 9.99999 msecs for Outlier scoring

Now lets se the histogram of Outlier score, to choose the optimal threshold to decid weather a data-point
is outlier is not.

In [235]: weights = np.ones_like(outlier_score)/outlier_score.shape[0] # to normalize the histogram to probability plot

hist(outlier_score, bins = 50, weights = weights, histtype = ’stepfilled’, color = ’cyan’)

title(’Distribution of outlier score’)

Out[235]: <matplotlib.text.Text at 0x36030588>

It can be observd that, the optimal outlier score threshold to decide weather a data-point is outlier is
outlier or not is around 2 for most of the cases, so lets use it to see our sesults.

In [236]: threshold = 2.

# plot non outliers as green

scatter(data[:, 0], data[:, 1], c = ’green’, s = 10, edgecolors=’None’, alpha=0.5)

# find the outliers and plot te outliers

idx = np.where(outlier_score > threshold)

scatter(data[idx, 0], data[idx, 1], c = ’red’, s = 10, edgecolors=’None’, alpha=0.5)

Out[236]: <matplotlib.collections.PathCollection at 0x3640e6a0>
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We have seen the results of LOF with naive approachfor KNN queries. Now lets see optimisations with
KD-Trees.

Using KD Trees KD-Trees insertion and KNN query.

In [239]: from sklearn.neighbors import KDTree as Tree

tic = time.time()

BT = Tree(data, leaf_size=5, p=2)

# Query for k nearest, k + 1 because one of the returnee is self

dx, idx_knn = BT.query(data[:, :], k = k + 1)

print ’++ took %g msecs for Tree KNN Querying’ % ((time.time() - tic)* 1000)

++ took 122 msecs for Tree KNN Querying

LRD computation.

In [240]: tic = time.time()

dx, idx_knn = dx[:, 1:], idx_knn[:, 1:]

# get the radius for each point in dataset

# radius is the distance of kth nearest point for each point in dataset

radius = dx[:, -1]

# calculate the local reachability density

LRD = np.mean(np.maximum(dx, radius[idx_knn]), axis = 1)

print ’++ took %g msecs for LRD computation’ % ((time.time() - tic)* 1000)

++ took 8.99982 msecs for LRD computation

Now, rest is same, so, i’m just replicating the rsult for completion.
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In [241]: # calculating the outlier score

tic = time.time()

rho = 1. / np.array(LRD) # inverse of density

outlier_score = np.sum(rho[idx_knn], axis = 1)/ np.array(rho, dtype = np.float16)

outlier_score *= 1./k

print ’+++++ took %g msecs for Outlier scoring’ % ((time.time() - tic)* 1000)

# plotiing the histogram of outlier score

weights = np.ones_like(outlier_score)/outlier_score.shape[0] # to normalize the histogram to probability plot

hist(outlier_score, bins = 50, weights = weights, histtype = ’stepfilled’, color = ’cyan’)

title(’Distribution of outlier score’)

#plotting the result

threshold = 2.

# plot non outliers as green

figure()

scatter(data[:, 0], data[:, 1], c = ’green’, s = 10, edgecolors=’None’, alpha=0.5)

# find the outliers and plot te outliers

idx = np.where(outlier_score > threshold)

scatter(data[idx, 0], data[idx, 1], c = ’red’, s = 10, edgecolors=’None’, alpha=0.5)

+++++ took 4.00019 msecs for Outlier scoring

Out[241]: <matplotlib.collections.PathCollection at 0x36ad0b38>
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The results are same, and should be.

Putting everything together Lets create a class, to combine evrything together. It will be important
in evaluating performance. From above results, we note that the most time is spent for KNN querying.

In [225]: import numpy as np

import matplotlib.pyplot as plt

import sys

from sklearn.neighbors import DistanceMetric

from sklearn.datasets import make_blobs

from sklearn.neighbors import KDTree as Tree

def exit():

sys.exit()

class LOF:

def __init__(self, k = 3):

self.k = k

# a function to create synthetic test data

def generate_data(self, n = 500, dim = 3):

n1, n2 = n / 3, n / 5

n3 = n - n1 - n2

# cluster of gaussian random data

data1, _ = make_blobs(n1, dim, centers= 3)

# cluster of uniform random variable

data2 = np.random.uniform(0, 25, size = (n2, dim))
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# cluster of dense uniform random variable

data3 = np.random.uniform(100, 200, size = (n3, dim))

# mix the three dataset

self.data = np.vstack((np.vstack((data1, data2)), data3))

np.random.shuffle(self.data)

# add some noise : zipf is skewed distribution

zipf_alpha = 2.5

noise = np.random.zipf(zipf_alpha, (n,dim)) * \

np.sign((np.random.randint(2, size = (n, dim)) - 0.5))

self.data += noise

# KNN querying with naive approach

def _knn_naive(self):

# distance between points

# import time

tic = time.time()

dist = DistanceMetric.get_metric(’euclidean’).pairwise(self.data)

# print ’++ took %g msecs for Distance computation’ % ((time.time() - tic)* 1000)

tic = time.time()

# get the radius for each point in dataset (distance to kth nearest neighbor)

# radius is the distance of kth nearest point for each point in dataset

self.idx_knn = np.argsort(dist, axis=1)[:,1 : self.k + 1] # by row’ get k nearest neighbour

radius = np.linalg.norm(self.data - self.data[self.idx_knn[:, -1]], axis = 1) # radius

# print ’+++ took %g msecs for KNN Querying’ % ((time.time() - tic)* 1000)

# calculate the local reachability density

LRD = []

for i in range(self.idx_knn.shape[0]):

LRD.append(np.mean(np.maximum(dist[i, self.idx_knn[i]], radius[self.idx_knn[i]])))

return np.array(LRD)

# knn querying with KDTrees

def _knn_tree(self):

#import time

# tic = time.time()

BT = Tree(self.data, leaf_size=5, p=2)

# Query for k nearest, k + 1 because one of the returnee is self

dx, self.idx_knn = BT.query(self.data[:, :], k = self.k + 1)

# print ’++ took %g msecs for Tree KNN Querying’ % ((time.time() - tic)* 1000)

dx, self.idx_knn = dx[:, 1:], self.idx_knn[:, 1:]

# get the radius for each point in dataset

# radius is the distance of kth nearest point for each point in dataset

radius = dx[:, -1]

# calculate the local reachability density

LRD = np.mean(np.maximum(dx, radius[self.idx_knn]), axis = 1)

return LRD

7



def train(self, data = None, method = ’Naive’) :

# check if dataset is provided for training

try:

assert data != None and data.shape[0]

self.data = data

n = self.data.shape[0] # number of data points

except AssertionError:

try:

n = self.data.shape[0] # number of data points

except AttributeError:

print ’No data to fit the model, please provide data or call generate_data method’

exit()

try:

assert method.lower() in [’naive’, ’n’, ’tree’, ’t’]

except AssertionError:

print ’Method must be Naive|n or tree|t’

exit()

# find the rho, which is inverse of LRD

if method.lower() in [’naive’, ’n’]:

rho = 1./ self._knn_naive()

elif method.lower() in [’tree’, ’t’]:

rho = 1./ self._knn_tree()

self.score = np.sum(rho[self.idx_knn], axis = 1)/ np.array(rho, dtype = np.float16)

self.score *= 1./self.k

def plot(self, threshold = None):

# set the threshold

if not threshold:

from scipy.stats.mstats import mquantiles

threshold = max(mquantiles(self.score, prob = 0.95), 2.)

self.threshold = threshold

# reduce data to 2D if required

if self.data.shape[1] > 2:

from sklearn.decomposition import PCA

pca = PCA(n_components = 2)

self.data = pca.fit_transform(self.data)

# plot non outliers as green

plt.figure()

plt.scatter(self.data[:, 0], self.data[:, 1], c = ’green’, s = 10, edgecolors=’None’, alpha=0.5)

# find the outliers and plot te outliers

idx = np.where(self.score > self.threshold)

plt.scatter(self.data[idx, 0], self.data[idx, 1], c = ’red’, s = 10, edgecolors=’None’, alpha=0.5)

plt.legend([’Normal’, ’Outliers’])

# plot the distribution of outlier score

plt.figure()
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weights = np.ones_like(self.score)/self.score.shape[0]

plt.hist(self.score, bins = 25, weights = weights, histtype = ’stepfilled’, color = ’cyan’)

plt.title(’Distribution of outlier score’)

Performance Evaluation Lets create a function to evaluate te performance.

In [226]: def perf_test(n_list = None, methods = [’Tree’, ’Naive’], plot = False):

import time

if not n_list: n_list = [2 ** i for i in range(7, 14)]

result = []

result.append(n_list)

for m in methods:

temp = []

for n in n_list:

tic = time.time()

lof = LOF(k = 5)

lof.generate_data(n = n, dim = 2)

lof.train(method = m)

temp.append(1000000 * (time.time()-tic))

print ’Took %g msecs with %s method for %d datapoints’ % \

((time.time() - tic) * 1000, m, n)

result.append(temp)

if plot:

fig, ax = plt.subplots()

ax.set_xscale(’log’, basex=2)

ax.set_yscale(’log’, basey=10)

plt.plot(result[0], result[1], ’m*-’, ms = 10, mec = None)

try :

plt.plot(result[0], result[2], ’co--’, ms = 8, mec = None)

except IndexError:

pass

plt.xlabel(’Number of data points $n$’)

plt.ylabel(’Time of execution $\mu secs$’)

plt.legend(methods, ’upper left’)

plt.show()

Now, lets compare the performace of 2 methods- Naive and KDTree implementations.

In [243]: perf_test(methods = [’Tree’, ’Naive’], n_list = [2 ** i for i in range(4, 14)], plot = True)

Took 2.00009 msecs with Tree method for 16 datapoints

Took 1.99986 msecs with Tree method for 32 datapoints

Took 2.00009 msecs with Tree method for 64 datapoints

Took 3.00002 msecs with Tree method for 128 datapoints

Took 4.99988 msecs with Tree method for 256 datapoints

Took 11.0002 msecs with Tree method for 512 datapoints

Took 20.9999 msecs with Tree method for 1024 datapoints

Took 48.0001 msecs with Tree method for 2048 datapoints

Took 106 msecs with Tree method for 4096 datapoints

Took 179 msecs with Tree method for 8192 datapoints

Took 3.00002 msecs with Naive method for 16 datapoints

Took 3.00002 msecs with Naive method for 32 datapoints

Took 6.00004 msecs with Naive method for 64 datapoints
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Took 13 msecs with Naive method for 128 datapoints

Took 30.9999 msecs with Naive method for 256 datapoints

Took 82.9999 msecs with Naive method for 512 datapoints

Took 249 msecs with Naive method for 1024 datapoints

Took 834 msecs with Naive method for 2048 datapoints

Took 3734 msecs with Naive method for 4096 datapoints

Took 15796 msecs with Naive method for 8192 datapoints

We see that KDTree outperforms Naive method for narge n, but it may not do well for small number of
datasets. In my PC, i cannot run Naive method beyond 213 datapoints, or else i receie MemoryError. So,
lets evauate te performance of KDTrees upto 1Million datapoints.

In [244]: perf_test(methods = [’Tree’], n_list = [2 ** i for i in range(4, 21)], plot = True)

Took 2.00009 msecs with Tree method for 16 datapoints

Took 2.00009 msecs with Tree method for 32 datapoints

Took 1.99986 msecs with Tree method for 64 datapoints

Took 3.00002 msecs with Tree method for 128 datapoints

Took 6.00004 msecs with Tree method for 256 datapoints

Took 9.00006 msecs with Tree method for 512 datapoints

Took 20 msecs with Tree method for 1024 datapoints

Took 50 msecs with Tree method for 2048 datapoints

Took 108 msecs with Tree method for 4096 datapoints

Took 194 msecs with Tree method for 8192 datapoints

Took 396 msecs with Tree method for 16384 datapoints

Took 837 msecs with Tree method for 32768 datapoints

Took 1741 msecs with Tree method for 65536 datapoints

Took 3596 msecs with Tree method for 131072 datapoints
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Took 7824 msecs with Tree method for 262144 datapoints

Took 18207 msecs with Tree method for 524288 datapoints

Took 40017 msecs with Tree method for 1048576 datapoints

We can see, algorithm is scaling well with data-set size n. If we analyse the complexity of algorithm, its
linearithmin , i.e. Θ(n log n).

In [228]:
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